176 APPENDIX 3

Indicative:
If this sample is burning green, then if itis a
sodium salt
{a) itis a sodium salt burning green
(b) it is burning yellow
Subjunctive:
If this sample were burning green, then if it were a
sodium salt
(a) it would be a sodium salt burning green
(b) it would be burning yellow
I'think that the natural interpretation in each case could
choose the first continuation as trivially true and reject the
second as trivially false. Nevertheless, in the subjunctive
case (though not in the indicative) I can imagine appro-
priate promptings and side remarks that would lead me to
take some variant of the counterfactual in the Stalnaker
way:
If this sample were burning green (say it was
barium) then it would still be true that had it been
sodium it would have burned yellow.
The question of what cues in English lead you to take a
counterfactual one way rather than the otheris, I think, a
very complicated business.
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Appendix 4
Nonstandard Analysis and
Infinitesimal Probabilities

COMPACTNESS

From Henkin’s completeness proof we know that first-
order logic is compact. If a set of sentences is such that
every finite subset of it has a model, then the set in ques-
tion has a model. The Henkin proof in no way depends on
the assumption that the set of sentences or the set of con-
stants of the language in question is denumerable. (That
every set with the property that every finite subset of it has
a model can be extended to a maximal set with that prop-
erty, holds for sets of arbitrary cardinality by transfinite
induction. The union of a chain of sets with that property
must have that property.) It does depend on the sentences
of the language being of finite length, and the logical con-
stants being limited to the truth functions, identity, and
first-order quantifiers. (For the proof that the model as-
sociated with the maximal consistent set is a model of
each sentence in it is by induction on the length of the
sentences.) Thus by Henkin’s proof {or by a variation on it
on the level of the models, the ultraproduct construction)
we see that we have compactness for rich, nondenumera-
ble first-order languages (e.g., for a first-order language
with a name for every real number and operation, and re-
lation symbols for every operation and relation on the re-
als). Compactness fails for higher-order quantification if
second-order quantifiers are given the “natural” interpre-
tation of having as their domain the power set of the do-
main of the first-order quantifiers, and so forth. Given the
natural interpretation of second-order quantifiers, we can
in second-order logic write a sentence, A, which has all
the truths of arithmetic as logical consequences. Then {A,
(3 x) (~ Fx),F1,F2,F3, . . } is an infinite set which
has no model but such that each finite subset of it has a
model. But if we relax the interpretation of higher-order
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quantifiers, so that a permissible model (Henkin calls
these general models) results whenever the higher-order
quantifiers are taken as ranging over a subset of their
natural domain, then the Henkin strategy for constructing
the domain of a model from the constants occurring in a
maximally consistent set of sentences succeeds for
higher-order domains as well. In this sense, higher-order
logic with the usual quantifier rules is complete and com-
pact. But, once general models are admitted, higher-order
logic cannot categorically characterize arithmetic any-
more than first-order logic can. Nonstandard general
models of arithmetic (and analysis) are now possible. It is
a mark of Abraham Robinson’s genius that he turned this
logical defect into a powerful tool of discovery.

NONSTANDARD ARITHMETIC

For the time being we will restrict our attention to first-
order logic. Let us choose as our language of arithmetic a
first-order language containing a name for every number
operation; symbols for successor, plus, and times; and a
relational symbol for less than. Let Arithmetic be the set of
all true sentences of this language. Take a variable, y.
Considerthetheory ArithmeticU{y #0,y #1,y #2,. . . }.By
compactness, this theory has a'model (and by the
Lowenheim-Skolem theorem a denumerable model}. Des-
ignate the elements of this model numbers* and in gen-
eral designate the denotation assigned by this model to
any constant by the constant followed by an asterisk. Thus
less than* is the extension assigned by the nonstandard
model to the less-than relation.

Since the axioms for a linear ordering are first-order,
and since the nonstandard model is a model of arithmetic,
less than* linear orders the numbers*. Since the claim
that zero is the least number is a first-order truth, and
since the nonstandard model is a model, 0* is the least*
number*. Likewise, 1* is the next-to-least* number*, and
so forth. The nonstandard model, considered under the
order relation less than*, begins with an w-series: 1*, 2*,
3*. . . .The elements of this series together with the as-
terisked operations and relations on them are isomorphic
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to the numbers, because the nonstandard model is a
model (e.g., since “2 + 2 = 4’ is a sentence of Arithmetic,
2* + *2* = 4* ) We may then, for all intents andpurposes,
call the elements assigned as denotations to the numer-

‘als, 1%, 2%, 3*, . . . , the numbers (or, for emphasis, the

standard numbers) and the structure consisting of them
together with the restriction to them of the asterisked rela-
tions and operations, the standard model of arithmetic.
The nonstandard model is, then, an end-extension of the
standard model.

~ The inclusion of one nonstandard element in the
model forces the inclusion of many others, since Arithme-
tic requires that every number have a successor greater
than itself. Let us partition the numbers* into equivalence
classes by considering the equivalence relation differs* by
a standard number (i.e., there is a standard, z, such that x
+*z=yory +*z=x). Call these equivalence classes
Blocks. The standard numbers form one Block. There
must be at least one greater* Block since there are
nonstandard numbers. But for every nonstandard Block
there must be a greater Block to which we may pass by
multiplying* by 2*. For if 2* times* y were in the same
Block asy, then by the definition of same Block they

‘would differ* by a standard number, but they differ* by y

(“Twicey lessy isy’’ is a sentence of Arithmetic), con-
tradicting the assumption thaty is nonstandard. A like ar-
gument will show that there is no least Block and that the
Blocks are densely ordered by less than*. Consider the
operation, halb, of approximate division by two. Halbd =
ciff 2d = cor 2d + 1 = c. Now if d is in a nonstandard
Block, halb* d is in a lesser* nonstandard Block. For if
they were in the same Block, d would have to be standard,
contrary to hypothesis. And if halb* d were standard, d
would be also, contrary to hypothesis. Likewise, between*
any two Blocks there must be another, for ifc and d are in
different Blocks halb* ¢ +* d must be in another Block (all
of whose members are) between* ¢ and d. The Blocks
must then be ordered with dense order: no first, no last
element. Inside the Blocks, we may rely on the sentences
of Arithmetic that say that every number has a successor
and that nothing comes after the number but before its
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successor, and that every number other than zero has a
predecessor, and that no number comes after its predeces-
sor but before it. This, together with the constraints of the
equivalence relation defining the Blocks, tells us that in-
ternally each Block is ordered as the negative integers,
zero, and positive integers. If we confine ourselves to
countable nonstandard models, this then fixes the order
type of the nonstandard model.

NONSTANDARD RATIONALS

Let the language for the rationals contain a name for each
rational; operations of addition, multiplication, and divi-
sion; a less-than relation; and the predicate ‘‘is a natural
number.” Let RAT consist of all the true sentences of this
language. Consider the theory RAT U (y >r,,y >T,y >4,
. . .) for some enumeration (I) of the rationals. Every finite
subset of this set has a model in the rationals, so by com-
pactness it does as well. (And, again, by the Lowenheim-
Skolem theorem, it has a countable model.) Once more we
will identify the denotata of the r;s as the standard ration-
als. So the nonstandard model contains an infinite ele-
ment greater than* all the standard rationals. Multiply it
by its divisor to get an infinite natural number* and the
argument establishing the structure of the nonstandard
natural numbers* can proceed as with nonstandard
arithmetic. The countable nonstandard model of the ra-
tionals is an extension of the countable nonstandard
model of arithmetic. Since a proposition of RAT asserts
that every rational has a reciprocal and that taking the re-
ciprocals of two numbers inverts the order, the infinite
elements must have reciprocals which are less than* any
positive standard rational and greater than* 0*. That is,
we have infinitesimal elements. Notice that we have quite
a rich structure of infinitesimals due to the interaction of
closure under addition, multiplication, and division.
Thus, if we have an infinite element, N, we have the corre-
sponding infinitesimal € = 1*/N, as well as €?*, €*, 1*/N
+* €, etc. Let us say that a nonstandard rational is finite if
it is bounded above and below by standard rationals other
than zero*, infinite if it is greater than* any finite number,

Y
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and infinitesimal if it is less than* any finite number. Let
us say that two nonstandard rationals are of the same
Order if their quotient is finite. Orders provide a coarser
partitioning of the infinite elements than the Blocks con-
sidered in the discussion of nonstandard arithmetic. In
fact,. . .N/4,N/2,N, 2N, 4N . . .are all of the same
Order. Nevertheless, for every infinite Order, there is a
greater* one. N2* is greater than N and of a different Or-
der.! Furthermore, for every infinite Order there is a lesser
one. Let us say that y is an approximate square root of
x ifx <*v2* <*x +* 1*, A sentence of RAT says that ev-
erything has at least one approximate square root.? An ap-
proximate square root of an infinite number cannot be
finite, since the finite numbers are closed under addition
and multiplication, and it cannot be of the same Order as x
since its square is. Along the same lines, we can show that
between* each two infinite Orders there is another one
using as the leading idea “an approximate geometric
mean.” Since two infinite elements are of the same Order
just in case their reciprocals are, and since the Order of the
reciprocals is the inverse of the Order of the infinite ele-
ments, this shows that the Orders of infinitesimals
(excluding zero) are densely ordered with no first or last
element.

NONSTANDARD ANALYSIS

In the preceding sections we took pains to keep to a de-
numerable model, but here we will not, so we may allow
the luxury of starting with a truly opulent first-order lan-
guage. Let our language of analysis include a name, c,, for
every real, r; a relational symbol for every relation on the
reals; and an operational symbol for every operation on
the reals. Let ANA be the set of all true sentences of this
language, and consider the theory which is the union of
ANA with the set of all sentences of the formc¢, <y for

1. Notice that this shows that we did not look at all the nonstandard
natural numbers in the argument which established the order type of the
denumerable nonstandard model of arithmetic.

2. Note that we could approximate infinitely close to V2, for in-
stance, since a translation of (z)(x)(x# D (3 y)(ly®>—x|<z)) is in RAT.
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each real r. By compactness, this theory has a model, a
nonstandard model of the reals. Again, the function
which maps eachreal, r, on to ¢,*, the denotation in the
nonstandard model of its name, is an isomorphism. Each
nonstandard model contains an isomorphic copy of the
reals. Working within the model we will simply call these
the standard reals. The denotation of the less-than rela-
tion, <*, totally orders the nonstandard reals, R*, since
the axioms of total order are first-order. The nonstandard
reals form a field (that is, (R*, 0%, 1%, +*, -*) is a field),
since the properties of a field are expressible by first-order
axioms. It need not have properties which require
second-order axioms for their expression. It is not Ar-
chimedean. It does not have the least-upper-bound prop-
erty. The standard reals provide an example of a set in the
model which has an upper bound but no least upper bound.

If the set of standard reals which satisfies F is un-
bounded in the standard reals, then *F has an infinite
element in the nonstandard model. For then the first-order
sentence (x)[Fx D (Jy) (Fy and y > x)]is in ANA, and tak-
ing x as the infinite element that we constructed with the
model forces F to contain an infinite element. Thus the set
of nonstandard natural numbers, N*, and the set of
nonstandard rationals, Ra*, contain infinite elements. The
statement that every real is bounded by natural numbers is
in ANA. So we can repeat the arguments of the previous
sections to show that Blocks and Orders of infinite ele-
ments are densely ordered with no first or last elements,
and likewise for the infinitesimals (excluding 0*). This,
however, no longer settles the question of order type since
the model is nondenumerable.

Let us say that x if infinitely close to y if [x — *y|* is
infinitesimal. Infinitely close to (symbolically =) is an
equivalence relation on R*. For standard realsr = s im-
pliesr =s, since zero is the only standard infinitesimal. If
x # y and at least one of them is finite, then there is a
standard real, g, between x and y. For suppose that 0* <*
x <* y, By the definition of = there is a standard, b, such
that 0* <*b <*y —* x. Choose the least standard integer,
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m, such that mb >* x. Then x <* mb <*y. Every finite
nonstandard real is infinitely close to a unique standard
real. For consider the set of all standard reals less than x.
It has a standard upper bound (since x is finite), so it has a
least upper bound, r, in the standard reals. Thenx is
infinitely close tor, since there is no standard g between x
andr. Furthermore, r is the unique standard real that is
infinitely close to x; since if y is infinitely close tor, then
by transitivity y is infinitely close tox, and if y as well asx
is standard, then they can be infinitely close only if iden-
tical.

Let F be a function on the reals. Then the standard
definition of “F convergestoa atb” is:

(le<0D @S)(x)(x — a| £ 0& [x —al< 8D — Fu| <€l
The nonstandard definition is: F converges to a atb iff
whenever x is infinitely close to (but different from) q,
F*(x) is infinitely close tob. The two definitions are
equivalent. The standard definition implies the nonstan-
dard one: Suppose that the standard definition holds.
Then its true instances are in ANA. That is, for a fixed real
number, E, greater than zero, we will have a sentence:

x)[[x —a|<D D b —F(x)| <E]
in ANA where D is a fixed real number. These sentences
must be satisfied in the nonstandard model. Then ifx is
infinitely close to a, for each such sentence we have [x —*
a*|* <*D* and thus p* —* F*(x)|* <* E*. But since we
have such a sentence for every standard real with E nam-
ing that real, F *(x) is infinitely close to b. The nonstan-
dard definition implies the standard one. Suppose the
nonstandard definition holds. Then consider any instanti-
ation of the standard definition to a fixed standard real, E:

(A)x)[x — a|]< 8D b —F(x)| <E]
This sentence is true in the nonstandard model, as can be
seen by choosing 8 infinitesimal. It is a first-order sen-
tence, so it holds in the standard model. Thus, reasoning
about the behavior of infinitesimals in the nonstandard
model can yield truths about limits in the standard model.
Many of the arguments of Newton and Leibniz can, from
our vantage point, now be seen to have just this character.




184 APPENDIX 4

Robinson’s interest in the nonstandard model was cen-
tered on its use as a tool to prove theorems about the
standard model.

NONSTANDARD MEASURE THEORY

Here we assume we have a nonstandard general model of
analysis, where the first-order language of analysis of the
previous section is extended to type theory. (Types are
taken as follows: The set of types is the smallest set such
that (1) Oisa type and (2) ift,,t,,. . .t,are types, then {t,,
ty, . . . t,) is a type.) The general model allows the
higher-order quantifiers to have as their domain some
subset of their ‘“natural domain.”’3 For instance, quan-
tifiers of type (0) may not range over all subsets of R*. The
elements of the model that are within the domains of the
quantifiers are called internal.

A relation R(xy) is said to be finitely satisfiable if for
every set of elements in its domain, a,, az, . . .a,, thereis
ay such that R(a;, y) holds for each a;. If R is a finitely
satisfiable relation on the standard reals (or the higher-
order structure built up from them), then, by compactness,
a nonstandard model can be found such that it contains an
element, y, such that given any standard x in the domain
of R, R*(x*, y). The arguments of the previous sections
that established the existence of nonstandard models with
infinite elements are a special case, with the finitely
satisfiable relation taken us <. The nonstandard model
can be arranged to contain elements such as y which si-
multaneously satisfy the relation R for all standard ele-
ments in their domain, for as many finitely satisfiable rela-
tions as you please, since the set of sentences {H slai, y;) for
every a; in the standard domain of Rj} still has the prop-
erty that every finite subset of it has a standard model.

The leading idea of nonstandard measure theory is the
use of *finite samples. The second-order predicate ““is
finite” has as its extension in the nonstandard model a set

3. The “‘natural domain” of the quantifiers of higher type induced
by a domain for type zero is defined as follows: the domain of type 0 is
the natural domain of type zero (= ND(t,)). Ift = (t;,t5,. . .t,), then
ND(t) = the set of all subsets of ND(t,) X ND(t,) X. . . X ND(t,).
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of sets of nonstandard reals, x. We call the members of x
the *finite sets of nonstandard reals. Some *finite sets con-
tain an infinite number of elements. (For instance, the set
of nonstandard natural numbers less than some infinite
nonstandard natural number is infinite, yet *finite.) The
relation “is the cardinality of”’ assigns each *finite seta
nonstandard natural number as its nonstandard cardinal-
ity. This allows us to use a counting measure for infinite
sets which are *finite. A *finite set, F, is called a sample.
Relative to such a fixed sample, we can take the measure
of any internal set, A, as the nonstandard cardinality of its
intersection with the sample, F, divided by the nonstan-
dard cardinality of the sample. If A and B are internal sets,
we can take the conditional probability of B on A as the
nonstandard cardinality of the intersection of A, B, and F

" over the nonstandard cardinality of the intersection of A

andF.
Some desirable properties follow from the *finiteness

condition on the sample: the measure of the null set is
zero; measure is monotonic, ifA C B, the measure A < the
measure B; measure is additive. Other desirable properties
can be secured by judicious selection of the sample.
Bernstein and Wattenberg have shown that there is a sam-
ple with the following characteristics: the associated mea-
sure is defined for all subsets of the unit interval which is
infinitely close to Lebesgue measure for all Lebesgue mea-
surable sets; it assigns each nonempty set a positive (pos-
sibly infinitesimal) measure; and it is translation-invariant
up to an infinitesimal. (The strategy of the existence proof
is to show that the appropriate relation, specifying the de-
sirable properties, is finitely satisfiable.) Parikh and
Parnes have carried through the analogous investigation,
putting the constraints directly on the conditional proba-
bility function and showing the existence of samples
which yield associated conditional probabilities with de-
sirable properties. Loeb has studied nonstandard mea-
sures on abstract spaces.*

4. For details, see these three papers and the references to related
work cited therein: A. Bernstein and F. Wattenberg, “Non-Standard Mea-
sure Theory,” in W. Luxemburg, ed., Applications of Model Theory to
Algebra, Analysis, and Probability (New York: Holt, Reinhart and




186 APPENDIX 4

INFINITESIMAL PROBABILITIES

The Vitali-Hausdorff example of a nonmeasurable set
shows that no sigma-additive, translation-invariant, real-
valued measure can be defined on all subsets of the inte-
val [0, 1). A wheel of fortune is spun and comes to rest
with some point or other at the lowest point. We can give
the wheel unit circumference and label its points with the
numbers in [0, 1). Assume the equiprobable distribution.
More specifically, assume that, for any point set, the prob-
ability that the wheel stops with a point in that set as the
bottommost one is equal to the probability for any point
set gotten from the first by displacing each member of the
first through a fixed angle, 0 (translation-invariance under
addition modulo 1.) Consider the equivalence relation: x
~ y isrational. This partitions [0, 1), and thus the points
in the circumference of our wheel, into equivalence
classes. Consider a choice set, C, containing one member
of each of these classes. For each rational in[0, 1) letC, be
the set gotten by adding (modulo 1) r to each member of C
(i.e., by translating the point set a rational distance around
the circumference). There are a denumerable number of
C,s; they are mutually exclusive; and their union is[o, 1).
They are equiprobable by translation invariance modulo
1. If propensities are real-valued, then either 3P.(C,)=0
or 3P,(C,) = «. If propensities are, furthermore, sigma-
additive, then0 = 10or= =1,

These difficulties can be overcome if the requirement
of sigma additivity is relaxed to that of finite additivity.,
Banach has shown (as a corollory to the Hahn-Banach
theorem) that Lebesgue measure can be extended to a
finitely additive, translation-invariant measure defined in
all subsets of [0, 1) (indeed, defined on all subsets of the
reals). The measure so defined is not, however, regular
(strictly coherent). There are sets other than the empty set

Winston, 1969), pp. 171-85; R. Parikh and R, Parnes, “Conditional Prob-
abilities and Uniform Sets,” in P. Loeb, ed., Victoria Symposium on
Non-Standard Analysis, 1972 (Heidelberg: Springer, 1974), pp. 180—94;
P. Loeb, ““A Non-Standard Representation of Borel Measures and o-Finite
Measures,” in Victoria Symposium on Non-Standard Analysis, 1972,
pp. 144-52.
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which have Lebesgue measure zero. Thus, on this ap-
proach, the probability in our example of the poin.ter .
stopping on a rational would be zero, although t}}1s mlg}.lt
happen. Then the conditional probability (conceived of in
the Kolmogoroff way) of stopping on a rational in [0, 1/2)
given that it stops on a rational would be undefined. Bgt,
as De Finetti and Savage have emphasized, intuitively it
should be defined. o

The problem is more general than has so far been indi-
cated, however. Lebesgue measure aside, there is no
finitely additive, translation-invariant, real-valued measure
defined on all subsets of [0, 1) that is regular. For, consid-
éring the Vitali-Hausdorff example again, the C,s are
equiprobable by translation invariance.? If they have a
non-zero, real-valued probability, then by the Archime-
dean property of the reals there is an integer, n, such that
n times their probability is greater than 1. Thus finite ad-
ditivity leads to a contradiction. So the C,s have zero
probability, and the measure is not regular.

If the measure has values in a non-Archimedean or-
dered field, as in nonstandard analysis, then the paradox
is avoided. And, as Bernstein and Wattenberg have
shown, there is a finitely additive, almost translation in-
variant, regular measure defined on all subsets of [0, 1).
Nonempty sets of Lebesgue measure zero, as well as the
C,s, then receive infinitesimal measure. And we can say
that the probability of our pointer hitting a rational in [0,
1/2), given that it hits a rational, is the ratio of the two ap-
propriate infinitesimals and equals 1/2.

5. Notice that translation invariance implies translation invariance
modulo 1.




